Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mar Biol ; 96: 85-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980130

RESUMO

Little is known about the biology of pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales as these animals are difficult to observe in the wild. However, both species strand frequently along the South African, Australian and New Zealand coastlines, providing samples for these otherwise inaccessible species. The use of DNA samples from tissue and DNA extracted from historical material, such as teeth and bone, allowed a first analysis of the population structure of both species in the Southern Hemisphere. A 279 base pair consensus region of the mitochondrial cytochrome b gene was sequenced for 96 K. breviceps (53 tissue and 43 teeth or bone samples) and 29 K. sima (3 tissue and 26 teeth or bone samples), and 26 and 12 unique haplotypes were identified, respectively. K. breviceps showed a higher nucleotide diversity of 0.82% compared to 0.40% in K. sima. Significant genetic differentiation was detected in the Southern Hemisphere between K. breviceps from South Africa and New Zealand (ФST = 0.042, p < 0.05). Mitochondrial control region sequences (505 bp) were available for 44 individuals (41 K. breviceps and 3 K. sima) for comparative purposes. A comprehensive global phylogenetic analysis (maternal lineage) of our sequences together with all available Kogia mtDNA sequences largely supported previously published phylogenetic findings, but highlighted some changed inferences about oceanic divergences within both species. The higher nucleotide diversity and low population differentiation observed in K. breviceps may result from its broad foraging ecology and wide distribution, which may indicate a more opportunistic feeding behaviour and tolerance towards a larger range of water temperatures than K. sima.


Assuntos
Cachalote , Baleias , Humanos , Animais , Filogenia , Austrália , DNA , Nucleotídeos
2.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106859

RESUMO

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Assuntos
Ecossistema , Aquecimento Global , Animais , Oceano Atlântico , Dinâmica Populacional , Baleias/fisiologia
3.
Front Zool ; 14: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649267

RESUMO

BACKGROUND: A substantial period of life after reproduction ends, known as postreproductive lifespan (PRLS), is at odds with classical life history theory and its causes and mechanisms have puzzled evolutionary biologists for decades. Prolonged PRLS has been confirmed in only two non-human mammals, both odontocete cetaceans in the family Delphinidae. We investigate the evidence for PRLS in a third species, the false killer whale, Pseudorca crassidens, using a quantitative measure of PRLS and morphological evidence from reproductive tissues. RESULTS: We examined specimens from false killer whales from combined strandings (South Africa, 1981) and harvest (Japan 1979-80) and found morphological evidence of changes in the activity of the ovaries in relation to age. Ovulation had ceased in 50% of whales over 45 years, and all whales over 55 years old had ovaries classified as postreproductive. We also calculated a measure of PRLS, known as postreproductive representation (PrR) as an indication of the effect of inter-population demographic variability. PrR for the combined sample was 0.14, whereas the mean of the simulated distribution for PrR under the null hypothesis of no PRLS was 0.02. The 99th percentile of the simulated distribution was 0.08 and no simulated value exceeded 0.13. These results suggest that PrR was convincingly different from the measures simulated under the null hypothesis. CONCLUSIONS: We found morphological and statistical evidence for PRLS in South African and Japanese pods of false killer whales, suggesting that this species is the third non-human mammal in which this phenomenon has been demonstrated in wild populations. Nonetheless, our estimate for PrR in false killer whales (0.14) is lower than the single values available for the short-finned pilot whale (0.28) and the killer whale (0.22) and is more similar to working Asian elephants (0.13).

4.
Mol Ecol ; 26(4): 977-994, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27914203

RESUMO

Elucidating patterns of population structure for species with complex life histories, and disentangling the processes driving such patterns, remains a significant analytical challenge. Humpback whale (Megaptera novaeangliae) populations display complex genetic structures that have not been fully resolved at all spatial scales. We generated a data set of nuclear markers for 3575 samples spanning the seven breeding stocks and substocks found in the South Atlantic and western and northern Indian Oceans. For the total sample, and males and females separately, we assessed genetic diversity, tested for genetic differentiation between putative populations and isolation by distance, estimated the number of genetic clusters without a priori population information and estimated rates of gene flow using maximum-likelihood and Bayesian approaches. At the ocean basin scale, structure is governed by geographical distance (IBD P < 0.05) and female fidelity to breeding areas, in line with current understanding of the drivers of broadscale population structure. Consistent with previous studies, the Arabian Sea breeding stock was highly genetically differentiated (FST 0.034-0.161; P < 0.01 for all comparisons). However, the breeding stock boundary between west South Africa and east Africa was more porous than expected based on genetic differentiation, cluster and geneflow analyses. Instances of male fidelity to breeding areas and relatively high rates of dispersal for females were also observed between the three substocks in the western Indian Ocean. The relationships between demographic units and current management boundaries may have ramifications for assessments of the status and continued protections of populations still in recovery from commercial whaling.


Assuntos
Microbioma Gastrointestinal , Jubarte , Lagartos , África Oriental , África Ocidental , Animais , Teorema de Bayes , Feminino , Estruturas Genéticas , Oceano Índico , Masculino , África do Sul
5.
PLoS One ; 11(4): e0152643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055057

RESUMO

The presence of crater-like wounds on cetaceans and other large marine vertebrates and invertebrates has been attributed to various organisms. We review the evidence for the identity of the biting agent responsible for crater wounds on large whales, using data collected from sei (Balaenoptera borealis), fin (B. physalus), inshore and offshore Bryde's (B. brydeii sp) and sperm whales (Physeter macrocephalus) examined at the Donkergat whaling station, Saldanha Bay, South Africa between March and October 1963. We then analyse the intensity and trends in its predation on large whales. Despite the scarcity of local records, we conclude that a cookie-cutter shark Isistius sp is the most likely candidate. We make inferences about the trends in (1) total counts of unhealed bitemarks, and (2) the proportion of unhealed bitemarks that were recent. We use day of the year; reproductive class, social grouping or sex; depth interval and body length as candidate covariates. The models with highest support for total counts of unhealed bitemarks involve the day of the year in all species. Depth was an important predictor in all species except offshore Bryde's whales. Models for the proportion of recent bites were only informative for sei and fin whales. We conclude that temporal scarring patterns support what is currently hypothesized about the distribution and movements of these whale species, given that Isistius does not occur in the Antarctic and has an oceanic habitat. The incidence of fresh bites confirms the presence of Isistius in the region. The lower numbers of unhealed bites on medium-sized sperm whales suggests that this group spends more time outside the area in which bites are incurred, providing a clue to one of the biggest gaps in our understanding of the movements of mature and maturing sperm males.


Assuntos
Balaenoptera , Cicatriz , Cadeia Alimentar , Comportamento Predatório , Tubarões , Cachalote , Animais , Feminino , Masculino
6.
Mol Biol Evol ; 31(5): 1121-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497033

RESUMO

Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.


Assuntos
Evolução Molecular , Orca/genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Ecossistema , Variação Genética , Genética Populacional , Genoma , Haplótipos , Cadeias de Markov , Modelos Genéticos , Dinâmica Populacional , Fatores de Tempo
7.
PLoS One ; 8(12): e81238, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349047

RESUMO

Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.


Assuntos
Jubarte/fisiologia , Animais , Feminino , Masculino , Estações do Ano
8.
PLoS One ; 4(10): e7318, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19812698

RESUMO

Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.


Assuntos
Jubarte/genética , Jubarte/fisiologia , Migração Animal , Animais , Oceano Atlântico , DNA Mitocondrial , Ecologia , Feminino , Genética Populacional , Haplótipos , Oceano Índico , Masculino , Modelos Biológicos , Modelos Genéticos , Comportamento Sexual Animal
9.
J Hered ; 98(2): 147-57, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17416933

RESUMO

The population structure and mitochondrial (mt) DNA diversity of southern right whales (Eubalaena australis) are described from 146 individuals sampled on 4 winter calving grounds (Argentina, South Africa, Western Australia, and the New Zealand sub-Antarctic) and 2 summer feeding grounds (South Georgia and south of Western Australia). Based on a consensus region of 275 base pairs of the mtDNA control region, 37 variable sites defined 37 unique haplotypes, of which only one was shared between regional samples of the Indo-Pacific and South Atlantic Oceans. Phylogenetic reconstruction of the southern right whale haplotypes revealed 2 distinct clades that differed significantly in frequencies between oceans. An analysis of molecular variance confirmed significant overall differentiation among the 4 calving grounds at both the haplotype and the nucleotype levels (F(ST) = 0.159; Phi(ST) = 0.238; P < 0.001). Haplotype diversity was significantly lower in the Indo-Pacific (h = 0.701 +/- 0.037) compared with the South Atlantic (h = 0.948 +/- 0.013), despite a longer history of exploitation and larger catches in the South Atlantic. In fact, the haplotype diversity in the Indo-Pacific basin was similar to that of the North Atlantic right whale that currently numbers about 300 animals. Multidimensional scaling of genetic differentiation suggests that gene flow occurred primarily between adjacent calving grounds within an ocean basin, with mixing of lineages from different calving grounds occurring on feeding grounds.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Baleias/genética , Animais , Feminino , Fluxo Gênico , Genética Populacional , Masculino , Filogenia
10.
Mol Ecol ; 14(11): 3439-56, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16156814

RESUMO

Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.


Assuntos
Anfípodes/genética , Evolução Molecular , Variação Genética , Genética Populacional , Baleias/parasitologia , Animais , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Geografia , Interações Hospedeiro-Parasita , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Densidade Demográfica , Dinâmica Populacional , Análise de Sequência de DNA , Especificidade da Espécie
11.
Mol Ecol ; 14(1): 107-21, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15643955

RESUMO

Using nine nuclear species-specific microsatellite loci and two mitochondrial gene fragments (cytochrome b and control region), we investigated the processes that have shaped the geographical distribution of genetic diversity exhibited by contemporary dusky dolphin (Lagenorhynchus obscurus) populations. A total of 221 individuals from four locations (Peru, Argentina, southern Africa, and New Zealand) were assayed, covering most of the species' distribution range. Although our analyses identify a general demographic decline in the Peruvian dusky dolphin stock (recently affected by high natural and human-induced mortality levels), comparison between the different molecular markers hint at an ancient bottleneck that predates recent El Niño oscillations and human exploitation. Moreover, we find evidence of a difference in dispersal behaviour of dusky dolphins along the South American coast and across the Atlantic. While data in Peruvian and Argentine waters are best explained by male-specific gene flow between these two populations, our analyses suggest that dusky dolphins from Argentina and southern Africa recently separated from an ancestral Atlantic population and, since then, diverged without considerable gene flow. The inclusion of a few New Zealand samples further confirms the low levels of genetic differentiation among most dusky dolphin populations. Only the Peruvian dusky dolphin stock is highly differentiated, especially at mitochondrial loci, suggesting that major fluctuations in its population size have led to an increased rate of genetic drift.


Assuntos
Golfinhos/fisiologia , Comportamento Sexual Animal , África Austral , Animais , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA , Golfinhos/genética , Variação Genética , Genótipo , Geografia , Masculino , Repetições de Microssatélites , Nova Zelândia , Densidade Demográfica , Água do Mar , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...